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AN ALGORITHM FOR NONDOMINANT SOLUTIONS 
OF LINEAR SECOND-ORDER 

INHOMOGENEOUS DIFFERENCE EQUATIONS 

TAKEMITSU HASEGAWA AND TATSUO TORII 

ABSTRACT. An algorithm is given for computing a weighted sum of a nondom- 
inant solution of a linear second-order inhomogeneous difference equation to 
a prescribed accuracy by estimating the truncation error. The present method 
is an extension of both the stable numerical method due to Olver and Sookne 
and a summation technique due to Deuflhard for computing minimal solutions 
of a homogeneous difference equation. The method is illustrated by numerical 
examples. 

1. INTRODUCTION 

Let an, bn , cn, dn be given sequences of real or complex numbers and let 

(11) an Yn- I + bn Yn + Cn Yn+1 = dn y n = 1, 2, ....9 

be a given linear second-order inhomogeneous difference equation. In this pa- 
per, we shall extend the stable numerical method due to Olver and Sookne [20] 
for computing minimal solutions of the homogeneous equation associated with 
(1.1 ) (i.e., dn = 0 for all n): 

(1.2) an Yn- I + bn yn + Cn Yn+1 = O, n = 1, 2, ... . 

satisfying a normalizing condition of the type 
00 

(1.3) mYm =S, 
m=0 

where Am is a given sequence of real or complex numbers and s is a constant, 
to the computation of a nondominant solution of the inhomogeneous equation 
(1.1). 

We also extend and incorporate a summation technique due to Deuflhard 
[5] for a minimal solution of the homogeneous equation (1.2). Indeed, for a 
positive integer K and given constants Xm, m = 0, 1, ... , K, we compute 
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the weighted sum 

K 

(1.4) SK = EZ mYm 
m=0 

of a nondominant solution of the inhomogeneous difference equation (1.1) to 
a prescribed accuracy by estimating the truncation error [9]. For applications 
that need a sum of the type (1.4), such as integration formulas of interpolatory 
type based on Chebyshev polynomials, we refer to [4, 10, 12]. See also ?5.2. 

Suppose that the homogeneous equation (1.2), where a, and c, do not van- 
ish, has a pair of complementary solutions fn and g, such that lim O fI/gn = 
0. Then fn and gn are referred to as minimal and dominant, respectively [6]. 
Let the inhomogeneous equation (1.1) have a particular solution hn for which 
limn O, h,/g, = 0, so that the general solution of (1.1) may be written as 

(1.5) Yn = a fn + /3gn + hn,~ 

where a and ,B are arbitrary constants. Nondominant solutions of (1.1) in the 
form afn + hn cannot be found simply by forward and backward recurrence of 
the difference equation, owing to strong instability; see Gautschi [6], Jones and 
Thron [13, p.163, p.395] and Wimp [23] for surveys of nondominant solutions 
and the relationship between difference equations and continued fractions. See 
also Levrie and Bultheel [14]. 

Olver [ 18] introduced a stable method having a built-in error estimation tech- 
nique [17] for the computation of nondominant solutions of (1.1). In Olver's 
method the original problem is replaced by an equivalent boundary value prob- 
lem, which is solved by Gaussian elimination without pivoting; see ?2.1. 

Since then, extensions or reformulations of Olver's method have been made. 
Indeed, Van der Cruyssen [22] reformulates Olver's method by solving the 
boundary value problem by LU decomposition instead of Gaussian elimination 
to reduce both the amount of computational effort and the possible occurrence 
of overflow. An extension to high-order recurrence relations is made by Cash 
[2, 3], where the boundary value problem is solved either by using Gaussian 
elimination [2] or by using LU decomposition [3]. See Lozier [15] for a more 
detailed discussion. On the other hand, Wimp [23, p.98] formulates the case 
using a normalizing condition of the type (1.3) by using Gaussian elimination 
to solve a system of linear equations in which the coefficient matrix is a band 
matrix except for the first row representing (1.3). 

In either method, whether the one based on Gaussian elimination or on LU 
decomposition, significant loss in accuracy may occasionally occur in the course 
of computation [22], [23, p.92]. Olver and Sookne [20] showed that in the case 
of a homogeneous difference equation it is possible to avoid the loss of accuracy 
in the elimination stage by combining Miller's algorithm and Olver's algorithm 
and by using a normalizing condition of the type (1.3). In ?2.2, we briefly review 
their method [20]. 

In ?3 we modify both the method due to Olver and Sookne and the summa- 
tion technique due to Deuflhard to make them applicable in the more general 
case of inhomogeneous equations. Indeed, we develop a numerically stable al- 
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gorithm for computing the sum (1.4) of a nondominant solution of (1.1) by 
avoiding possible loss of accuracy. 

Further, our method is an extension of the methods due to Olver [18] and 
Van der Cruyssen [22] for initial value problems to the case using the normaliz- 
ing condition (1.3) as well as a generalization of the method given in Wimp [23, 
p.98]. In fact, our method also uses the LU decomposition scheme, along with 
a rank-one updating technique [8, p.592], to solve a system of linear equations 
which is obtained from the original difference equation (1.1) and the normaliz- 
ing condition (1.3). The coefficient matrix is a band matrix except for having 
a row representing the normalizing condition (1.3) in an appropriate place in 
the matrix determined so that the loss of accuracy in the elimination stage may 
be avoided. The linear system is successively solved with the size of the system 
being increased until an estimated truncation error of the required solution is 
within the prescribed accuracy. 

In ?4, a convergence result for the present algorithm is discussed. Numerical 
examples are given in ? 5. 

2. OLVER'S METHOD AND ITS MODIFICATION BY OLVER AND SOOKNE 

2.1. Olver's algorithm and loss of accuracy. For simplicity, we assume that the 
initial value of the solution yo of (1.1) is given, although in Olver's method no 
initial values of the desired solution are required and a case of a more general 
normalizing condition (1.3) is discussed. Beginning with po = 0 and PI = 1, 
one computes the solution p, of (1.2) for n = 2, 3, ... and a sequence { q, } 
defined by 

(2.1) qo=yo, q,=(a,q,-I- d,pn) c, n= 1,2. 

The computation of p, and qn is terminated automatically at a certain value N 
of n, which is described below. Let e be a given tolerance in the approximation 
YMN) ( m < N) to the wanted solution Yi . Then the value N is determined so 
that the following stopping criterion is satisfied 

(2.2) I4(Nf+l) _ p) q = /(pNpN+1)I<E 

The approximations y N) can be generated by computing 

YN)- (qn+PnYn+l)/Pn+i, n=N- 1, ..., 1, 

with starting value yN) = 0. 
Significant loss in accuracy may occasionally occur in the course of the com- 

putation of Pn, especially when the value of Ifol is very small [23, p.92]. This 
can be seen as follows. Since Pn is expressed as 

(2.3) Pn = (fo gn-go fn)/(fo gl-go fi) , 

it increases ultimately in proportion to the dominant solution gn . If the value 
of Ifol is small compared with Igofi/gil, however, initially Pn may behave 
more like a multiple of the minimal solution fn but soon is contaminated with 
rounding error growing like gn which causes a steady loss in significant figures. 
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Olver and Sookne [20, p.943] suggest that although there is a loss of signif- 
icance if the condition prescribes the value of fo, this loss in accuracy often 
does not occur if a more general condition of the form ( 1.3) is used. In the next 
subsection we outline their method. 

2.2. Modification by Olver and Sookne. Olver and Sookne show that the above 
drawback in Olver's method, when applied to the homogeneous equation (1.2), 
can be overcome by incorporating Miller's algorithm along with the normalizing 
condition (1.3). Their modification applies when the dominant solution gn 
tends to infinity with n in such a way that ultimately I&nI is monotonic. In 
this connection, the following lemma due to Olver and Sookne [20] plays an 
important role. 

Lemma 2.1 (Olver and Sookne). For a positive integer M, let the coefficients 
an, bn and cn in (1.2) satisfy 

(2.4) Ibnl > lanI + Icnl when n > M+ , 

and Ibnl < lanl + lcnl otherwise. Let Pn be the solution of (1.2) satisfying 
PM = 0 and PM+1 = 1. Then [Pn I > IPn-II for all n greater than M. 

Remark 2.1. The computed solution Pn above, which is dominant, is free from 
the numerical difficulty mentioned in the previous subsection. 

By using the solution Pn ( n = M + 1, M + 2, . .. ) obtained in Lemma 2.1, 
with starting value qM = 1 instead of qo = yo Olver and Sookne compute the 
sequence {qn } defined by (2.1), where dn are replaced by zero for all n, until 
the stopping criterion (2.2) is satisfied. Once the value N has been determined 
in this way, they apply Miller's method; the backward recursion of (1.2) is 
made with starting values YN = 0 and YN- 1 = qN- 1 /PN to generate Yn, 
n = N, N - 1, ..., 0, which are finally renormalized by using the normalizing 
condition (1.3). 

As is mentioned in Olver and Sookne [20], this scheme applies only to ho- 
mogeneous difference equations; in the case of an inhomogeneous equation, 
both forward and backward recursion may be unstable. In the next section we 
consider the case of an inhomogeneous equation, for which we require some 
assumptions in addition to the condition (2.4). 

3. STATEMENT OF THE ALGORITHM 

Similarly to Olver and Sookne, here and henceforth we assume that the co- 
efficients in (1.1) satisfy the condition (2.4). Further, we need some definition 
and assumptions on the relative behaviors of fn , gn, and hn in a finite range 
of n as well as their asymptotic behaviors mentioned previously. We begin 
with the definition of dominance provided by Oliver [16] with some modifi- 
cation. Let xn and zn be two sequences. Then we say that x, dominates 
Zn (or zn is dominated by xn) in the range r < n < s if there exist r > 0 
and s > r such that Ixn+l/xnl > Izn+l/znl for all n in the range r < n < s. 
Oliver's original definition is the case where s oo. Now, we assume that in 
the range 0 < n < M the wanted solution yn = (kJn + hn does not dominate 
the complementary solutions fn and gn, whereas Yn dominates fn and is 
dominated by gn in the range n > M. Recall that since gn is a dominant 
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solution, limn,0 ,y,/g, = 0. Lozier [15, p.231 discusses the difference of the 
definition of dominance due to Oliver and the dominant solution. 

Select an integer N (> K, M), and then replace the problem of computing 
the sum SK (1.4) of y, satisfying (1.1) and (1.3) by the one of solving the 
linear system of equations, 

(3.1) [~~A(N) O][Y(N)]=d(N)] 
(3.1) [ T _1 ] [SK) 

0 

where the (N + 1) x (N + 1) matrix A(N) and the (N + 1)-vectors y(N) d(N) 
and s are defined by 

a, b1 c, ... 0 

o ... aM bM CM 

(3.2) A(N) - l............. AM 1mM+1 ............ AN 
aM+, bM+ 1 CM++ I . 0 

aN-l bN-I CN-1 
o aN bN 

y(N) - [(N) lN) y(N)T 

(3.3) d(N) -[di, ..... , dm, s, dM+l, ...... , dN]T , 

(3.4) = [4o 1 . S XK ? 
0 ..... o]T, 

respectively; we have omitted the dependence of s on N. Then S'N' (= 

TY(N) and y(N) are approximations to SK and Yn, respectively. 
Now we solve the linear system (3.1) by using an LU decomposition similarly 

to Van der Cruyssen [22] and Cash [3] along with a rank-one updating technique 
[8, p.592]. Let B denote the same (N + 1) x (N + 1)-matrix as A(N) , but having 
the elements lk ( k = M + 2, ... , N) replaced with zeros. Further, let e be a 
unit vector 

(3.5) 
e = [eo, ..., eN]T, where ek= O (k = O,., N, k$ M) and eM = 1, 

and let r be a vector defined by 

(3.6) r = [0,..., 0, 1 M+2, . A.l. . AN] 

Suppose that we have the LU factorization L U = B; then we have 

(3.7) A(N) = B +erT= LU?+erT, 
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where L and U are lower and upper triangular matrices, respectively, given 
by 

1 

0... 
(3.8) L= go ... M 1I 

IM+ 1 1 

o ... IN 1 

a1 b1 Ci ... 0 

aM bM CM 
(3.9) U UM 4' 

UM+1 CM+1 

UN 

The valuesof JuO, . U. , M1 M+1, . 1. , IN, UM, .-. ,UN, and 4 in (3.8) and 
(3.9) will be given later. 

Theorem 3.1. Let A(N) , L and U be the (N + 1) x (N + 1)-matrices defined 
by (3.2), (3.8) and (3.9), respectively. For the vectors d(N), e, r, s defined 
by (3.3), (3.5), (3.6), (3.4), respectively, let z, h, v and w be (N + 1)-vectors 
obtained by computing Lz = d(N), Lh = e, UTV = r and UTW = { by 
the process offorward substitution, respectively. Further, for the solution y(N) of 
A(N)y(N) = d(N), let x be a vector defined by x = Uy(N). Then, for x and S(N) 
in (3.1) we have 

(3.10) x = z-h {vTZ/(1 + vTh)} and SN) = wTx. 

Proof. We see from (3.7) that A(N) y(N) = d (N) can be rewritten as 

(LU+LhvTU) U-1x=Lz, 

which yields 

(3.11) x+hvTx = z. 

The first equation in (3.10) follows easily by solving (3.1 1) for x . The second 

equation in (3.10) is easily verified from the fact that S(N) = cTy(N) = (TU1,X 
T _ X . C 

Remark 3.1. The solution y(N) of A(N)y(N) =d(N) can also be obtained if we 
solve Uy (N) = x by back substitution after the appropriatc value of N has 
been determined in such a way as described below in this section. 

We proceed to show how to compute the nontrivial elements in L and 
U given by (3.8) and (3.9), respectively, and the elements of vectors z, h, 
v and w defined in Theorem 3.1. Let 4u = [guo,... ,UMlI]T, and A = 
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[Ao ... , 1 ] T, where Pk and Lk are elements in the (M + 1)th rows of 
L (3.8) and A(N) (3.2), respectively. Let UM be the leading principal subma- 
trix of order M of U (3.9) 

a, b1 C1 ... 0 

UM= CM-2 

0... aM 

Then one can see from (3.2) and (3.7) that #T UM = AT, i.e., Um =A, 
which is easily solved for 4u by forward substitution as follows: 

(3.12) -ib= - i =Cili2 = ... . M - I 
ai+I 

with starting values ,u_1 = U-2 =20 . By using the values of 4u = [4uo, . .. , Mm- 1 T 

obtained above, the elements 4, Ij ( j = M + I, ... , N) and uj (j = M, ... , N) 
in L (3.8) and U (3.9) are computed as follows: 

(3.13) 4=1M+1 +CMIM-1, UM=1M-bMiM-1-CM-1IPM-2, 

(3.14) 1M+1 = , UM+1 = bM+l - IM+1, 
UM 

(3.15) I= aj , u1=bj-cj1ll , j=M+2,...,N. 

Now, we evaluate each component of the vectors z, h, v and w, for which 
we set z =[zo, ...,zNT, h = [ho, ..., hNT, v =[vo,...,vNT and w 
= [wo, ... , WN]T, respectively. From the equations L z = d(N) and L h = e 
we have 

zi = di+l, hih=O, i=O, ..., M-1, 
M-1 

ZM = S - 1k Zk, hM = 1, 
k=O 

zj=dj-ljzj_, hj=-ljhjyj, j=M+l1,... ,N. 

Similarly, from UTV = r and UTW = 4 we have 

W_ 1 = W-2 = 0 Wi = i - bi wi- I - Ci_ I Wi-2, O, I,... M- 1, 

WM bMbM WM-1 -CM-1 WM-2 Wm M+1 -4 WM-CM WM-1 
UM UM+1 

Vo V1 VVM+1O = 
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~j- c1-1 wj11 A - c1l v1_.1 
b =XiCj_ 

I ,j =_, j = M + 2 j = 2... , N, 

where we have set (i-0 (i > K). 
From (3.10) we can compute the values of x and SIN) as follows: 

Xi=Zi5 i=05 ... ,M - 1 xj=zj-hj0(N)f), j=M, ... 5 N 

N N N 

(3.16) SK ) =Z Wk Xk = Wk Zk N) Wk hk 
k=O k=O k=M 

where q$(N) is defined by 

q!4N) - 
k=M+2 Vk Zk 

1 + Ek=M+2 Vk hk 

It follows immediately from (3.16) that 

(3.17) 
N+1 N 

SKN+) )- iN) = WN+1 ZN+j - q(N + 1) , Wkhk + q$(N) E Wk hk, 
k=M k=M 

and the truncation error in SKN) can be written in the form 

00 

SK -SN) - 
n s { ) )} 

n=N 
00 00 N 

(3.18) = Wk Zk(- COO ) Wkhk + O(N) E Wkhk. 

k=N+ 1 k=M k=M 

Generally, the right-hand side of (3.17) converges to zero rapidly as N increases 
and therefore the truncation error (3.18) is of the same order of magnitude as 
the first term V(N+ 1) - v(N). Here, we consider the following two cases: if we 
wish to compute V(N) to the required absolute accuracy ea, then we apply the 
recurrence relation for values of n past both K and M until 

(3.19) ?S(n+l)_,(n)I < 

is satisfied, and we then set N = n. On the other hand, if we wish to compute 
S(N) to the relative accuracy er, then we examine the condition 

(3.20) | ?(r ,)s(n) IS(n)I < e 

instead of (3.19). If the series (3.18) does not converge rapidly, the stopping 
criteria above could fail. To enhance the reliability of the criteria, it might be 
advisable to continue the computation until the condition (3.19) (or (3.20)) is 
satisfied several times, at least twice consecutively. In the numerical examples 
below we checked the criterion (3.19) twice. 

Now we note that the appropriate choice of M in the present algorithm plays 
an important role in reducing the number of computations required as well as in 
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reducing the possible occurrence of loss of accuracy mentioned in ?2.1. Indeed, 

the present algorithm requires less computational effort if M can be set as large 

as possible so as to satisfy the condition (2.4). To see this, we now count the 

number of computations required in the present algorithm. Factorization into 

an L U product requires N + M multiplications and N divisions. To solve 

for v (and w), N - M - 1 (and N + M) multiplications and N - M - 1 
(and N + 1) divisions are required. Similarly, N and N - M multiplications 

are required in solving for z and h, respectively. Further, 4N - 3M + 1 
multiplications and a single division are required to compute sVN)J. To sum up, 

we need 9N - 3M - 1 multiplications and 3N - M + 1 divisions. 

On the other hand, for the matrix A (N) (3.2) in the special case where M = 0 

and A1 = 0, the computation of (3.15) might occasionally suffer from loss of 

accuracy similar to ?2.1. The reason is simply seen as follows. Now, we assume 

that ALO $ 0 in addition to M = 0 and A1 = 0. Then we see from (3.13) and 

(3.14) that 4 = 0, uo = )L, 11 = a,/2Io and uI = b1 . Further, if we denote u, 
= -Cn ?ln+i/?ln, n > 1, using a sequence {1ln}, then it is seen from above and 

(3.15) that r?n, n > 1, satisfies the recurrence relation (1.2) with starting value 

60 = 0 and any t1 $ 0. This means that ?In is expressed as a multiple of the 

right-hand side of (2.3), and therefore the computation in (3.15) becomes very 

susceptible to loss of significance when fo happens to be very small in modulus 

compared to go; see Table 1 below. 
Finally, the solution y(N) can also be obtained by solving Uy(N) - x by 

backward substitution as follows: 

(j_CjlYN) 
(3.21) y(N) XN y(N) XjCj+iY1 j 

(3.21) YN=- Y1 = 

r(N) Y (N) (N 
(N) =XM X- YM+1 (N) xi bi+1 Y+i -Ci+l YN+2 

YM= U = a1+ii=M-1, ...,O . 

We conclude this section with some remarks on the relationship between 

the present algorithm and other existing methods. The algorithm given in this 

section includes the method of Deuflhard, the method of Van der Cruyssen, and 

that given in Wimp as particular cases. Indeed, we can see that the Deuflhard 

scheme [5] coincides with the present one in the special case where dn 0- ?, 

n = 0, ... , N and s = 0 in (3.1) and (3.3) and M = N in (3.2), provided 

the last diagonal elements in L (3.8) and U (3.9) are replaced with AN and 

aN+1, respectively. Here AN is determined from the relation (3.12) with i set 

to N. 
Another case of our problem, where M = 0 and Xi = 0 ( i = 0, ..., K- 1) 

XK = 1, agrees with that given in Wimp [23, p.98], for which the Gaussian 

elimination technique is applied instead of LU decomposition with rank-one 

updating technique. Further, the present scheme reduces to the method due to 

Van der Cruyssen [22] for the initial value problem, where we set M = 0 and 

i= 0 (i = 1... N) in (3.2) aswellas j = 0 forall i $ K but K = 1 
in (3.4), while Cash's algorithm [3] is an extension of the Van der Cruyssen 

method to high-order difference equations. 
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4. CONVERGENCE RESULTS 

We discuss convergence as N - oo of the algorithm given in the previous 
section, in particular, of y,(N) and therefore of S(N) (3.10). We seek nondomi- 
nant solutions Yn of (1.1) in the form Yn = a fn + hn with a constant a, which 
is determined so as to satisfy the normalizing condition (1.3), i.e., 

00 00 

(4.1) (Z = (S-E Amhm)/Z#mAfm. 
m=o m=O 

We now examine the convergence of ynN) to Yn as N -x o . 
It is seen from (1.5) that the solution y(N) of (3.1) can be written as 

(4.2) ~N nf + CN)gn+h (4X2) ~~~~Yn =1 f+ 2 gn+ hn , 

for some constants 4IN), 42N). On the other hand, the solution Y}N) must 
satisfy the conditions 

N 
Y(N) = Z Am YmN) = 5. 

m=O 

The above relations along with (4.2) yield 

(4.3) (N) F + 4() GN + H S 

;(X 
2N1+ 

( gN+1 + hN+1 = 

where FN, GN and HN are defined, respectively, by 

N N N 

(4.5) FN=Z Amfm, GN= Amgm, HN=Z Amhm. 
m=O m=O m=O 

Solving (4.3) and (4.4) for C (N) and C,(N) gives 

(4.6) C(N) =-{hN+GN +gN+1(S-HN)}/(fN+1GN-gN+1 FN), 

(4.7) C( N) = {fN+1(s-HN) + hN+1 FN }/(fN+1 GN -gN+1 FN). 

Theorem 4.1. Let fn , gn and hn be solutions of (1.1) having the properties 
given in ? 1, that is, Iimno fnl/gn = 0 and limn. hnl/gn = 0. Further, let 
FN, GN and HN be defined by (4.5), respectively, with the properties 

lim fN+l GN/gN+I = 0, lim hN+j GN/gN+l = 0, 
N- o00 N-_oo 

and FN and HN do not tend to 0. Then the algorithtn given in the previous 
section converges and 

(4.8) limrn ) y Yn 
N-.oo 
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Proof. To show (4.8), it is sufficient to verify in (4.2) that limN 04( = a and 

limN,oo 47) = 0, which follow simply by using the assumption of Theorem 4.1 
in (4.6) and (4.7), respectively, and by noting (4.1). o 

5. NUMERICAL EXAMPLES 

Examples in this section were computed on the SONY NEWS 3860 in double 
precision; the machine precision is e = 2.22... x 10-16. 

5.1. Example 1. We compute a finite sum SK = n= y, of the nondominant 
solution Y, = 2-n (n = 0, 1, ...) of the following linear second-order differ- 
ence equation 

(5.1) Yn- 2 - xn +Yn+l (2X5--) 2_n n > l. x 

Here, the minimal and dominant solutions of (5.1) are Bessel functions of the 
first and second kind Jn(x) and Yn(x), respectively, both of which are of 
oscillatory type [19] for 0 < n < [x] . For n > [x], on the other hand, IJnI and 

I1 / Yn I decrease monotonically to zero as n increases. The condition (2.4) is 
satisfied if we choose M = [x] . 

As mentioned in ?3, when x in (5.1) is a zero of the minimal solution 
Jo(x), numerical instability may occur in our algorithm in the special case 
where Al = 0 and M = 0 in (3.2), although this numerical difficulty could 
be eliminated by setting M to be any positive integer < [x]. To see this, we 
choose x = 8.653727912911012, in Table 1 (next page). Namely we choose 
the third positive zero of Jo(x), and a normalizing condition of the type yo + 

2(Y2 + y3 + .) = 2. 
In Table 1 we list the computed solutions y N) and the approximate sum 

S(N) - ZK0 ynN) with K = 14 satisfying the condition (3.19) for the required 
tolerance Ea = 10 10 . As is shown in the second and fourth columns in Table 1, 
the estimated N for which IS(N+I) -S(N) < 10-10 is N = 40 when we 
incorrectly set M = 0 in (3.2), but N = 35 when M = [x] = 8. The computed 
value of S(4N) in the last row of Table 1 is seen to satisfy the tolerance 8a 

- 10-10 for M = 8, while the value of S(40) in the column M = 0 fails, 14 
owing to numerical instability, as expected. 

It should be noted that the particular solution Yn ( n > 0) wanted is dom- 
inated by Jn only for 0 < n < [x] and dominates Jn otherwise, while Y, 
dominates Yn for all n > 0. This relative dominance was crucial for the 
present algorithm to work. If this relative dominance is violated, the present 
method fails. To see this, consider the recurrence relation of the type (5.1) hav- 
ing the right-hand side so that the particular solution Yn = an if 0 < n < [x] 

and Yn = a2[x]-n if n > [x], with some constant a > 1 . Choose the normal- 
izing condition yo + 2(Y2 + y3 + ..) = 1 + 2((a + 1)a[x] - a2)/(a - 1) and 
let x = 20.5 and a = 5. Then the computed value of the weighted sum 
S3 = 3 is S(N) = 155.99948883 for the required accuracy Ca = 1?-10 

3~~~~~~~~~~~~~~ and the estimated N is N = 47. The actual error of S3N) is 5 x i0-4, which 
is much greater than Ca ( =10- 10 ) . 
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TABLE 1. Computed values y(N) of nondominant solutions 
Yn = 2-n of the recurrence relation (5.1) and approximate 
sum s(Nf) = ZK0 y(N) with K = 14 for the required absolute 
accuracy ea = 10-10. Italic digits are incorrect digits in 
the computed y(N) and S( Complementary solutions of 
(5.1) are Bessel functions Jn(x) and Yn(x). Setting x = 
8.653727912911012, the third positive zero of JO(x), causes 
numerical instability, seen in the second column, when we 
choose M = 0 in (3.2), while with an appropriate choice of 
M = [x] = 8 no numerical difficulty is detected, as shown in 
the fourth column 

M=O 4 M=[x]-8 = 0 
(N) (= y(40)) error (N) (= y(35)) n____n__n___ error__ yn (nj3) error 

0 1.00000000E 00 2E-16 1.0000000000000E 00 OE 00 
1 5.40487415 E-0 1 4E-02 5.0000000000982E-01 E- 1 
2 2.59357219E-01 9E-03 2.5000000000227E-01 2E-12 
3 8.88377584E-02 4E-02 1.2499999999123E-01 9E-12 
4 2.80699505E-02 4E-02 6.2499999991649E-02 8E-12 
5 3.55831387E-02 4E-03 3.1250000001051 E-02 1E-12 
6 5.50623004E-02 4E-02 1.5625000009565E-02 lE-l 
7 5.81664984E-02 5E-02 7.8125000122127E-03 IE- 1I 

0 8 4.59316423E-02 4E-02 3.9062500101927E-03 lE-l 
9 2.93004691E-02 3E-02 1.9531250066327E-03 7E-12 

10 1.58344232E-02 2E-02 9.7656250360358E-04 4E-12 
11 7.4 795 7323 E-03 7E-03 4.8828125169565E-04 2E-12 
12 3.15994063E-03 3E-03 2.4414062570719E-04 7E-13 
13 1.21737417E-03 1 E-03 1.2207031276565E-04 3E-13 
14 4.36059716E-04 4E-04 6.1035156340957E-05 9E-14 

15 1.48643095 E-04 1 E-04 3.0517578153650E-05 3E-14 
16 4.9 7416161E-05 4E-05 1.5258789070863E-05 8E-15 
17 1. 70154514E-05 9E-06 7.6293945335265E-06 2E-15 

32 2.32830597E-10 5E-17 2.3282628627229E-10 4E-15 
33 1.16415310E-10 IE-17 1.1638371709852E-10 3E-14 
34 5.82076593E- 11 2E-18 5.7970976272870E- 11 2E-13 
35 2.91038293E-11 IE-18 2.7275594464178E-11 2E-12 
36 1.45519059E-11 9E-18 
37 7.27588098E-12 8E-17 
38 3.63733286E-12 7E-16 
39 1.81339310E-12 6E-15 
40 8.59698592E-13 5E-14 

S(N = 2.OOOOOOOOE 00 6E-05 1.9999389648847E 00 4E-1 I 
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5.2. Example 2. The present method has practical applications in constructing 
interpolatory integration rules for an integral of highly oscillatory functions, 
which is difficult to evaluate with ordinary quadrature rules. In particular, our 
scheme could be effectively used to obtain a set of approximations to an indef- 
inite integral, such as fXl eiwtf(t)dt with a set of values of x and a set of 
values of co, where f(t) is a given smooth function and {xI < 1. 

Suppose that f(t) is expanded in terms of Chebyshev polynomials T,(t) 
= cos n6 (t = cos 0) as follows: 

00 

(5.2) f(t) = a, Tn(t), Iti < 1 
n=O 

where the prime denotes a summation whose first term is halved. In practice, 
f(t) can be efficiently approximated by a finite sum of Chebyshev polynomials 
Pm (t) = EZ'no alm)Tn (t) by using the Fast Fourier Transform (FFT) (1, 7, 1 11. 
If f(t) is a smooth function, the approximation Pm converges to f rapidly as 
m increases. For the function f(t) given in (5.2) (or the approximation pm(t)) 
we prove the following lemma in Appendix A. 

Lemma 5.1. For the function f(t) given by (5.2), write the indefinite integral 
fXl eiwtf(t)dt in theform [10, 12] 

(5.3) I(x, co; f) j eiwtf(t) dt = 4.eiwxg(x), Ixl < 1, c > 0, 

and expand g(x) in terms of Chebyshev polynomials 
00 

(5.4) g(x) = E Yn Tn(X). 
n=O 

Then, the coefficients Yn in (5.4) satisfy the inhomogeneous difference equation 

.2n 
(5.5) Yn-I-i a) Yn -Yn+1 = an-1 -an+1 n > 1, 

and a normalizing condition of the type E'' iY0 (-Y n ) = 0. 

Remark 5.1. For the approximation pm(t) instead of f(t), it suffices to replace 
an-, and an+, in the right-hand side of (5.5) by a(m) and a(m, respectively, 
where we assume that a(m) = 0 for all n > m. 

The coefficient Yn in (5.4) is a particular solution of (5.5). The complemen- 
tary solutions of (5.5) are modified Bessel functionsIn(-iwt) and (- l) nKn(-iwO) 
( = Kn(iwto)). In the range n < [w] , both of IInl and IKnI are of oscillatory type, 
whereas for n > [w], jI InI and I /Kn I decrease rapidly to zero as n increases. 

Here we show that with the choice of M = [w] in (2.4) the present scheme 
could effectively evaluate the particular solutions Yn and the weighted sum g(x) 
(5.4) to a prescribed accuracy ea. In reality, instead of g(x) given in (5.4) it 
is sufficient to obtain a truncated Chebyshev series 

K 

(5.6) g(x) gK(X) =EYn Tn(x), 
n=O 

where K is determined so that the truncation error of gK(x) is at the levels 
of the rounding error of the computer, which is usually less than the required 
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accuracy ea for y, or the weighted sum g(x) of y,n. In practice, it might 
be allowed to set K to the smallest n such that Yn++ II < ? , provided IYn I 
= O(rn) for a positive constant r < 1 and for sufficiently large n, because then 
the error I E0+ ynTn(x)I ? = IYnI IYK+1I/(1-r). If the required 
accuracy ea is much larger than , then we might determine the smallest K 
so that IYK+ II < c 6a for some small constant c > 0, say, c = 0.1 at most. In 
incorporating this scheme into the present algorithm, we approximate {Yn} by 

{Yn4)} = {xnlun , the first relation in (3.21). 
Now, we compute the weighted sum SK - gK(x = 1) = EIK (5.6) to 

the prescribed accuracy 6a = 10-10 for the indefinite integral (5.3) of f(t), 
where in particular we choose 

2 
00 

f(t)= 2at+a2=2 :aTn(t) a=O.9, 

and cl = 150. In this case the right-hand side of (5.5) is 2(a-1 - a)an for 
n > 1. We choose M = [w] = 150 in (3.2) to satisfy the condition (2.4). The 
estimated value of the smallest K such that IYK+ II < 0.1 X 6a = 0.1 x 10-10 is 

K = 223 and the estimated N for which IS(N+ 1) - S(N) < 10-10 is N = 225. 
The computed SN)- g223(X = 1) = 10.83928930523+i6.550524798738 
and the error is estimated to be E g(l) - g223(1) = (0.8 + i7) x 10-11 
by using the value of g(x = 1) evaluated as follows. From (5.3) we have 
g(x) = iwoe-iwx(RI + iMJ), where RI and JI are RI _ RI(x, cl; f) = 
X cos(cO)t)f(t) dt and WJI -JI(x, cl; f) = fXl sin(cft)f(t) dt, respectively. 

To compute RI(x = 1, c)= 150; f) and NJ(x = 1, c = 150; f) we used 
the QUADPACK [21] routine DQAWO with the required absolute accuracy= 
1014. 

TABLE 2. Weighted sums g223(x) = yoTo(x)/2 + y1Tl(x) + 
* + y223T223(x) (x = 0.1, 0.3, ..., 0.9) of the computed 
nondominant solutions yn of the recurrence relation (5.5) for 
the required absolute accuracy ea = 10-10 and their actual 
errors. Clenshaw's algorithm is used to evaluate the summation. 
Italic digits are incorrect digits 

g223(x) = Rg + iQig Error= ERE + iQ3E 
x Rg Sg ERE 'aE 

0.1 0.1198685750311 0.05338395512740 -3E- 12 -3E- 12 
0.3 0.09819379394844 0.01279216097213 -2E- 12 -3E- 12 
0.5 0.1895492858980 -0.04626511161379 9E-13 -lE-l1 
0.7 0.3905994887744 -0.01898488674630 2E-12 -1E- 1 
0.9 1.025563752769 0.1025908390260 -9E-14 3E-12 

Once all the values of y(N) (n = 0, 1, ..I , 223) are computed from (3.21) 
after the weighted sum SN)= = 1) of (N) is obtained, any value 
of g223(x) for many x, where IxI < 1, can be easily evaluated by using 
Clenshaw's algorithm. Table 2 lists the computed values of g223(X,), where 
XV = 0.1, 0.3, ... , 0.9 and their errors, which are estimated by using the 
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QUADPACK in a similar way mentioned above. The computed g223(x)'s 
listed in the second and third columns are seen to satisfy the required accu- 
racy e_ = 10-10. 

APPENDIX A 

Here we prove Lemma 5.1. Differentiating both sides of (5.3) with respect 
to x and changing the variable x into t yield 

f(t) = g(t) + g'(t)/(iw). 

Integrating this relation on [-1, x] gives 
rx rx 

(5.7) f(t) dt= j g(t) dt + { g(x) - g(- 1) }/(iw). 

Substituting the Chebyshev series expansions (5.2) and (5.4) into (5.7) and 
noting 

2 Tn(t)dt Tn+(x) Tn l(x )n 2 n > 2, 

we obtain the relation (5.5) by comparing the coefficients of Tn(x). For (5.3) 
to hold with x = -1 requires the condition g(- 1) = 0, which yields along 
with (5.4) the normalizing condition E nOcio Yn (-1 )n = 0. 
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